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Abstract: Biologists have been investigating plant defence response to virus 
infections; however, a comprehensive mathematical model of this complex 
process has not been developed. One obstacle in developing a dynamic model, 
useful for simulation, is the lack of kinetic data from which the model 
parameters could be determined. We address this problem by proposing a 
methodology for iterative improvement of the model parameters until the 
simulation results come close to the expectation of biology experts. These 
expectations are formalised in the form of constraints to be satisfied by the 
model simulations. In three iterative steps the model converged to satisfy the 
biology experts. There are two results of our approach: individual simulations 
and optimised model parameters, which provide a deeper insight into the 
biological system. Our constraint-driven optimisation approach allows for an 
efficient exploration of the dynamic behaviour of biological models and, at the 
same time, increases their reliability. 

Keywords: systems biology; dynamic parameters; plant defence response; 
constraint-driven optimisation. 
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1 Introduction  

Pathogens are a serious threat to living organisms and can lead to fitness costs, 
physiological damage or even death (Zhao et al., 2011). In particular, plants have 
specially evolved sophisticated mechanisms that can effectively fight-off infections with 
various pathogens. Upon pathogen recognition, plants trigger a complex signalling 
network, referred as plant defence response. For a successful defence the activation of 
plant defence must be rapid, efficient and targeted (Moore et al., 2011). It was shown that 
salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways play a fundamental 
role in mediating the defence signalling response in plants (Reymond and Farmer, 1998). 

The goal of systems biology is to build a holistic view of dynamic interactions 
between various biological pathways. The modelling and simulation of biological 
pathways has attracted a considerable attention lately (Cho and Wolkenhauer, 2003; 
Janes and Lauffenburger, 2006; Klipp and Liebermeister, 2006). In practice, many 
biological pathways are mostly qualitatively understood while the numerical data of the 
kinetic parameters are often sparse. Due to the small amount of existing quantitative data, 
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mathematical optimisation methods were recently employed in systems biology. Various 
local deterministic optimisation techniques, like Levenberg-Marquardt algorithm 
(Marquardt, 1963; Levenberg, 1944), Sequential Quadratic Programming (Boggs and 
Tolle, 1995) and stochastic approaches [Simulated Annealing (Kirkpatrick et al., 1983), 
Genetic Algorithms (Mitchell, 1996) and Evolutionary Algorithms (Eiben and Smith, 
2003)], are applied in systems biology. 

Plant defence response, like all biological mechanisms, has several dynamic 
parameters that are not accessible to experimental measurements, such as reaction rates 
and inhibition thresholds. One way to estimate these parameters is to fit the model to the 
experimental data (if they are available) (Walter and Pronzato, 1994). On the other hand, 
the absence of kinetic data for model fitting raises the importance of qualitative 
knowledge of domain experts. This knowledge of biological pathways can serve as the 
basis for the construction of a dynamic mathematical model. Most of the plant-pathogen 
interaction studies are focused on individual interactions or subsets of the whole plant 
defence mechanism (Olmedo et al., 2006; Staswick, 2008). The first attempt to model the 
plant defence by constructing a Boolean network and carrying out numerical simulations 
of plant defence model was proposed by Genoud et al. (2001). However, this model is 
simple, containing 18 biological entities and 12 Boolean operators, whereas large-scale 
experiments have shown that many more components are involved in defence signalling 
(Kestler et al., 2008). 

The goal of our work is to develop the iterative process to determine the dynamic 
parameters of the plant defence model, in correspondence with the knowledge of biology 
experts. The structure of the plant defence model developed by Miljkovic et al. (2012) 
served as a basis for the dynamic model. The dynamic model is useful in predicting plant 
reactions to the conditions that have not yet been tested experimentally. The expected use 
of the model is to predict dynamic behaviour of selected variables by model simulation 
and to use the simulation results to suggest new experiments. Simulations provide faster 
results than the wet lab experiments that involve a time-consuming process of growing 
mutant plants with altered gene expressions in a specific pathway. Hence, simulation 
results can provide support in identifying the key components for gene mutations in the 
plant defence and assist in further experimental research. Such an approach to experiment 
design is more beneficial than a simple intuitive or experimental trial and error approach. 

In this study we concentrate on the model plant species Arabidopsis thaliana and its 
interaction with viruses. At the level of signal perception we select the Turnip Crinkle 
Virus (TCV) infection. We focus our work to the most studied of the three major 
pathways: the SA pathway. The main contributions of this paper are: 

 Methodology for acquiring knowledge from the domain experts resulting in a new 
dynamic SA model 

 Formalised biological knowledge in the form of constraints 

 The dynamic model of the SA pathway. 

The structure of this paper is as follows. Materials and methods section describes the 
methodology used to search for the model parameters through the iterative process. 
Every step of this methodology is presented in a separate subsection. The Results and 
discussion section presents the results and discussion of three iterative steps. The 
Conclusion section summarises the main advances of the present work and discusses 
future aspects. 
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2 Materials and methods 

An overview diagram of the iterative model construction process is shown in Figure 1. 
First, the SA model was manually constructed using the Hybrid Functional Petri Net 
formalism (HFPN) (Matsuno et al., 2003) and curated by biologists. Since the manual 
estimation of the parameters was unattainable, an automatic method was developed based 
on a differential evolution algorithm (Storn and Price, 1997). Here we illustrate the whole 
process loop of converging to the dynamic parameters of the SA pathway, that best 
satisfy the expert evaluation. This process includes collecting knowledge from biologists, 
formalising it in the form of constraints, optimisation of parameters that violate the 
minimal number of these constraints and the revision of the model structure and 
constraints. Eventually, the system yields both simulation results and optimised model 
parameters, which provide an insight into the biological system. The details of every step 
in this construction process are explained in the following subsections. 

Figure 1 A schema of the utilised methodology for the constraint-driven optimisation of plant 
defence model parameters (see online version for colours) 

 

2.1 Problem identification 

The final goal of developing the plant defence model is to verify whether the plant will 
have resistant reaction to survive the virus attack if some genes in the model are silenced. 
This would practically save time for the biology scientists in the design and performance  
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of real-life experiments with plants that on average last two years. To be able to confirm 
or reject a hypothesis, the plant defence model has to be first developed together with the 
genes that are interesting candidates for silencing. 

The difficulty of the plant defence modelling task is reflected in its complexity and 
dynamics. The plant defence is complex due to the three highly-interconnected major 
pathways: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), whereas the exact 
relations between the involved molecules are still unclear. The dynamics is also difficult 
to address due to the lack of quantitative kinetic data that would reveal the unknown 
kinetic parameters, such as reaction rates and inhibition thresholds. 

2.2 Choice of modelling formalism 

A Petri net (PN) is a graphical and mathematical formalism (Reisig, 1991), chosen for 
the plant defence model representation. It is a bipartite graph with two types of nodes: 
places and transitions (see Figure 2). Places denote the resources of the system whereas 
transitions are the events that modify the system from one state to the other. Places can 
have zero or a positive number of tokens. The state of the system is called a marking and 
represents the distribution of tokens over the places. The definition of a PN includes the 
specification of an initial marking, which assigns a number of tokens to each place. In 
Figure 2, the initial marking is {1,0}, which corresponds to the number of tokens at 
places {place 1, place 2}. Weighted arcs connect places with transitions, identifying 
under which condition the transition can be executed. A transition is enabled if its input 
places contain at least a required number of tokens (defined by the arc weight). For 
example, the transition in Figure 2 is not enabled, because the arc weight requires the two 
tokens from the input place 1, while the place 1 has only one token. The firing of an 
enabled transition results in the consumption of the tokens from the input places and the 
production of tokens in its output places (this number is determined by the weights of the 
outgoing arcs from the transition). These changes in the number of tokens through places 
represent the dynamic behaviour of the system. 

Figure 2 The graphical representation of basic Petri net 

 

There are different types of PNs. Standard PNs are discrete and qualitative. But with their 
various extensions, PNs allow for specification of both qualitative and quantitative 
models. Some of the PN extensions are Hybrid Petri nets (HPN), Functional Petri nets 
(FPN) and HFPN which represents the combination of HPN and FPN (Matsuno et al., 
2003). In the following two paragraphs we consider these extensions in more detail. 

HPN introduces two types of places: discrete and continuous (Silva and Recalde, 
2004). The discrete places can have tokens that are integer numbers which is identical to 
the basic PN. Additionally, the HPN introduces the continuous variables, which can have  
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tokens that are real numbers. This formalism is convenient for modelling continuous 
processes with the switch control (Silva and Recalde, 2004). In systems biology, 
mechanisms can be analysed from the switch control perspective. For example, biologists 
believe for several genes to be responsible for the plant defence response. By introducing 
the different variable types, we can emphasise the switch roll of a certain gene by 
modelling it with the discrete variable while the other components would be modelled 
with the continuous variables. 

Functional Petri nets (FPN) contain continuous places and transitions (Hofestädt and 
Thelen, 1998). The firing of transitions has an additional parameter: speed. The speed of 
firing can depend on the values of the input places (Hofestädt and Thelen, 1998). An 
additional characteristic of this formalism is that the quantity of consumed places can be 
different from the quantity of produced places. The rate of the biological reaction is a 
crucial parameter in signalling networks and therefore was modelled in our work. It 
turned out that the combination of HPN and FPN formalism, i.e. Hybrid Functional Petri 
Net (HFPN), would be an appropriate formalism for building plant defence model. HFPN 
supports modelling of the continuous reactions controlled by the switch mechanisms, and 
at the same time, the reaction rate depends on the input concentrations, which is often the 
case in biological systems. As a result of this search and having in mind the overall goal 
of plant defence simulation model, we used the Cell Illustrator software, that implements 
HFPN formalism. This software started from the initial version named Genomic Object 
Net (Nagasaki et al., 2004). More specifically, it allows to model ordinary differential 
equations (ODE) (Coddington and Levinson, 1955) hidden to the end user through a 
user-friendly HFPN graphical interface. The software facilitates an easy building of the 
network topology based on the experts’ knowledge. Cell Illustrator has a graphical editor 
that has drawing capabilities and allows biologists to model different biological networks 
and simulate the dynamic interactions between the biological components. On the other 
hand, Cell Illustrator does not have capability for automatic optimisation of dynamic 
parameters. For this reason, we have used additional combinatorial optimisation 
parameter search (see subsection 2.6). 

2.3 Manual construction of the SA model 

The literature studied for the manual model construction was selected by the domain 
experts. We have focused on scientific papers related to the plant defence response. An 
ideal case a citation in one review paper or in two scientific papers was a prerequisite to 
include information into the SA model. If the information was available only in one 
publication, we critically evaluated the publication quality (e.g. high impact factor, 
author’s relevance in the field) before including this information into the model. The 
information on the biosynthetic pathways and other available data was mostly acquired 
from biological databases such as KEGG (Kanehisa and Goto, 2000) and TAIR 
(Swarbreck et al., 2008). KEGG was used as a basis for constructing the metabolic 
pathways, the biosynthesis of the hormones and the main reactions involved in these 
processes. Additional reactions and genes involved were implemented according to the 
Aracyc database (Rhee et al., 2005). TAIR provided gene information, and synonym 
names were acquired from iHOP (Hoffmann and Valencia, 2004) and TAIR. 
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To construct the plant defence response model topology, we defined the types of 
biological components (molecules) and relations (reactions), shown in Figure 3. Six types 
of reactions are identified in the SA model: binding, degradation, inhibition, activation, 
gene expression and transport. We introduce binding - because in some cases it is an 
essential means of regulation – defined as a close interaction between at least two 
reactants resulting in a functional active complex. Degradation is a diminishing of one 
component by processing it to smaller non-functional pieces; we introduce it to our 
model as a process that decreases the component’s concentration. Inhibition is defined as 
a process when one component abolishes the performance of another component and 
prevents it from functioning. As activation we consider all the chemical reactions in 
which reactants A and B synergistically form a product C and the concentration of the 
product depends on the concentration of both substrates. Gene expression is defined as 
the constant or regulated activation of a gene which produces a functional protein. 
Finally, transport represents the moving of a biological component from one part of the 
cell to another. It is introduced in a few cases when the biology experts considered it 
important for the plant defence response mechanism. 

Figure 3 Types of biological molecules and reactions modelled with Cell Illustrator (see online 
version for colours) 

 

Biological components are grouped into four classes: small compounds or metabolites 
(e.g. Chorismate, etc.), proteins (e.g. Chorismate synthase, etc.), genes (e.g. EDS5 gene, 
etc.) and protein complexes (e.g. NPR1 oligomer, etc.). Note also that components with 
similar functions are grouped into a single node that represents an entire family of these 
components. 

2.4 Model analysis through simulation 

Analysis of the dynamic model behaviour was performed through iterative simulations of 
the manually constructed model. Based on the experts’ evaluation the iterations were 
repeated until the simulation curves match their expectations. The simulation was  
 
 



   

 

   

   
 

   

   

 

   

    Plant defence model revisions 69    
 

    
 
 

   

   
 

   

   

 

   

       
 

performed initially in the Cell Illustrator software. The later simulations when the 
parameters were automatically estimated were executed in the simulator based on the 
C++ code exported from Cell Illustrator. The simulator outputs the time series curves of 
the dynamic behaviour of the molecules of interest. 

2.5 Constraints formulation 

Formalising the expert’s knowledge into mathematical formulas is an iterative process. 
After evaluation together with biology experts, it turned out that there is a lot of tacit 
domain knowledge that can be expressed explicitly. This knowledge is accumulated in 
biology literature and had to be recognised as valuable in the parameter optimisation 
search. We have explicitly focused on the knowledge related to the biological molecules 
and the relationships between them. The following five types of relationships, formed as 
constraints between the entities, were defined: 

Inequality relationship between molecules 

 Growth rate of the molecules (for example, quantity of molecule 1 grows faster than 
that of molecule 2) 

 Curve shape – e.g., it starts from some initial level, reaches a maximum and then 
drops back to approximately similar level 

 Minimal amplitude and minimal growth of the curve 

 Temporal sequence in curve maxima 

o Same time (molecule 1 has the peak at the same time as molecule 2)  

o Maximum before (molecule 1 has the peak before molecule 2) 

2.6 Combinatorial optimisation parameter search 

Evolutionary algorithms (EAs) are stochastic optimisation methods utilising the ideas of 
biological evolution in computer problem solving. The main advantage of EAs is their 
effectiveness and robustness while solving combinatorial optimisation problems which 
are often intractable by traditional numerical methods. They are nowadays extensively 
used in science, engineering, management and other domains. Nevertheless, a 
shortcoming of EAs is their computational complexity which derives from iterative 
population-based search of the solution space. On the other hand, processing a population 
of candidate solutions makes EAs amenable to a parallel implementation that results in 
significant calculation speedup.  

One of the popular algorithms within the EA class is the differential evolution 
algorithm. The differential evolution (DE) algorithm performs a population-based search 
that optimises the problem defined on a continuous space by iteratively improving a set 
of candidate solutions with regard to a given measure of quality. The parallel version of 
the DE algorithm developed by Filipič and Depolli (2009) was used in our work. 

The optimal parameter setting of the plant defence model is defined as a 
combinatorial optimisation problem. Criteria function for the optimisation is the 
normalised sum of the normalised violations of constraints that are acquired from the  
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biologists. If the criteria function has value 0 it means that all constraints are satisfied, 
while value 1 results of all non-satisfied constraints. All values in the range between 0 
and 1 denote that a certain percentage of the time-series curves that are involved in the 
definition of the specific constraint do not satisfy it. 

2.7 Human refinement of model and constraints 

If the model simulation with the automatically determined parameters does not match the 
expectations of the biologists, the model structure and the constraints are refined.  

2.8 Results interpretation 

The simulation results are interpreted by the biology experts. The results allow for 
qualitative conclusions regarding the dynamic behaviour of the model. This means that in 
practice, it is possible to compare different curves in order to conclude which are the 
major components influencing the plant defence response. 

3 Results and discussion 

Here we provide the details on the SA model and illustrate the process of converging 
towards the biology experts expectations by presenting the results of three steps of the 
method described in the previous section. 

3.1 Manually constructed SA model 

SA belongs to a wide variety of phenolic compounds with a hydroxyl group. Phenolic 
components are the plant’s secondary metabolites with a broad spectrum of functions. SA 
directly or indirectly influences the seed germination, seedling establishment, cell 
growth, respiration, stomatal closure, senescence-associated gene expression, responses 
to abiotic stresses, basal thermo tolerance, nodulation in legumes fruit yield and 
thermogenesis (Clarke et al., 2004; Klessig and Malamy, 1994; Vlot et al., 2009) and the 
disease resistance. The SA pathway is the most studied in the literature and is considered 
to have an important role in both local and systemic acquired resistance (Vlot et al., 
2009). 

SA in plants is synthesised via two pathways both requiring chorismate as a substrate 
(Vlot et al., 2009). One pathway goes through a subset of enzymatic reactions initially 
catalysed by phenylalanine ammonia lyase (PAL). The other pathway, (shown in  
Figure 4) involves a two-step reaction catalysed with isochorismate sinthase (ICS) and 
isochorismate pyruvate lyase (IPL) (Vlot et al., 2009). Most of the SA synthesised in 
response to pathogen attack comes from the ICS/IPL pathway. Arabidopsis thaliana 
encodes two ICS enzymes, ICS1 and ICS2. When plant cell is attacked by pathogens, 
90% of SA is synthesised through ICS1 (Vlot et al., 2009).  

It has been experimentally shown that the SA concentration rises fast when a virus 
attacks the plant cell (Baebler et al., 2011; Carr et al., 2010; Uknes et al., 1993; Jeong  
et al., 2012). It is also known that, when the concentration of SA is too high, the plant  
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cell will not survive. These experimental results indicate the existence of regulatory 
mechanisms, more precisely, negative and positive feedback loops, which fine-tune the 
SA concentration in the cell and allow the plant cell to survive after the virus attack. A 
negative feedback loop slows down a signalling process, while the positive feedback loop 
accelerates it. The final cascade product regulates its own concentration by activating or 
inhibiting the genes involved in its biosynthesis. For example, NPR1 inhibits the  
expression of EDS1 and PAD3/4 (see Figure 4) (Shah, 2003), genes that activate the 
production of SA and consequently diminishing its own production, thus forming a 
negative feedback loop. 

Figure 4 The simplified model of SA biosynthesis and signalling pathway represented in Cell 
Illustrator (see online version for colours) 

 

The manually built SA model represents current knowledge of a plant defence signalling 
with an emphasis on plant-virus interaction. More specifically, we have based our model 
on resistant interaction between Arabidopsis and virus TCV. In Arabidopsis, the 
resistance to TCV is mediated by the R protein HRT (Ibdah et al., 2009) which 
subsequently induces the signalling cascade leading to plant defence response which  
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limits viral spread and multiplication. Activation of HRT protein stimulates accumulation  
of SA (Chandra-Shekara et al., 2004). SA accumulation results in the monomerisation 
and the activation of NPR1, which consequently triggers the activation of the SA 
dependent PR proteins (in SA model all PR proteins are represented with a single node 
PR1) (Maier et al., 2011; Fu et al., 2012; Moore et al., 2011). 

The SA model was developed through several iterations. In the next three subsections 
we demonstrate how the methodology for the parameter optimisation was applied, by 
showing the results of the three iterative steps. This methodology (see the section 
Materials and methods) includes the revision of the model structure and the defined 
constraints after every iteration. 

3.2 Step 1 – SA model v1.0 

The SA model contains 52 biological molecules and 38 reactions including inhibitions. 
This was an initial model built in the Cell Illustrator software. The simulator outputs 4 
curves (as time series with 1000 points) of each biological molecule, which were the 
most interesting for the biology scientists. For this model in total 8 constraints were 
acquired from the biologists at the beginning of the model construction process. After the 
DE algorithm search was performed with a population number set to 10,000, the optimal 
parameters with respect to criteria function were estimated. With this set of parameters, 
for each violated constraint there is a value that represents the portion of time points in 
which the constraint was violated. The overall criteria function represents the average of 
constraint violations. 

The following data represent the results of the first optimisation experiment 
performed on the SA model v1.0. Below are the detailed values for individual constraints 
and the overall value of the criteria function: 

lowerThan(SA_chl, SA_cyto) = 0.088 
slowerRate(Chorismate, Prephenate) = 0.012 
slowerRate(Chorismate, Phenyl_pyruvate) = 0.052 
slowerRate(Chorismate, Phenylalanine) = 0.055 
zeroPeakZero(SA_cyto) = 0.096 
zeroPeakZero(PR1) = 0.037 
equalRate(Prephenate, Phenyl_pyruvate) = 0.028 
equalRate(Phenylalanine, Phenyl_pyruvate) = 0.007
finalCriteria = 0.376/ 8= 0.047  

Based on the parameter set, the simulator outputs the curves of 4 biological molecules: 
SA, NPR1, PR1 and EDS1. Apart from the SA molecule, which is a small compound, the 
other three molecules are proteins. Their dynamic behaviour is shown in Figure 5. 
However, according to the biology experts some parts of these curves are not considered 
correct even though the total criteria function showed that on average 0.047 of each 
constraint is violated. This headed to revision of model structure and formalising 
additional knowledge in the form of constraints. 
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Figure 5 The dynamic behaviour of the SA, EDS1, PR1 and NPR1 variables based on the 
optimal set estimated with respect to the criteria function calculated from the 8 
constraints during the step 1 

 

3.3 Step 2 – SA model v2.0 

After inspection of the curves from Figure 5, the biology experts have revised the model 
structure. This correction resulted in a second model version: SA model v2.0 containing 
61 biological molecules and 56 reactions. Also, more constraints were specified leading 
to a set of 33 constraints. 

The parameter search was once more performed with the same set up as in the step 1. 
The following data represent the results of the second optimisation experiment performed 
on the SA model v2.0. Below are the shortened detailed values for some individual 
constraints and the overall value of the criteria function: 
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equalRate(Prephenate,Phenyl_pyruvate) = 0.004
slowerRate(EDS1,EDS5) = 0.028 
maxSameTime(ROS,HRT) = 0.931 
maxAfter(HRT,MPK3)= 0.000 
lowerThan(SA_chl,SA) = 0.001 
zeroPeakZero(Chorismate) = 0.333 
stopFast(virus) = 0.000 
…  
finalCriteria = 4.521/ 33 = 0.137  

Here the total criteria function showed that on average 0.137 of each constraint is not 
satisfied. The dynamic curves of the same 4 molecules (SA, EDS1, PR1 and NPR1) are 
shown in Figure 6. Even though the criteria function shows more violated constraints 
compared to step 1, the biology experts were more satisfied with the presented curves in 
Figure 6 with respect to the curves in Figure 5. Nevertheless, since the criteria function 
was overall worse, the model structure and the constraints were revised again. 

Figure 6 The dynamic behavior of the SA, EDS1, PR1 and NPR1 variables based on the optimal 
set estimated with respect to the criteria function calculated from the 33 constraints 
during the step 2 
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3.4 Step3 – SA model v3.0 

Finally, in the last iteration, the SA model converged to the v3.0 containing in total 50 
biological molecules and 89 reactions. This means that during the revision of SA model 
v2.0 the number of biological components decreased from 61 to 50. The biologists have 
decided to present some of the biological molecules, belonging to the same component 
families and thus having the same functionality, with the single node. Also, since the 
number of biological molecules reduced from the SA model v2.0 to SA model v3.0, the 
number of constraints consequently decreased from 33 in the step 2 to 29 in the step 3. 
The following data represent the results of the third optimisation experiment performed 
on the SA model v3.0. Below are all final values for individual constraints and the 
overall value of the criteria function: 

equalRate(Prephenate,Phenyl_pyruvate) = 0.002 
equalRate(Prephenate,Phenylalanine) = 0.002 
equalRate(Prephenate,Trans_cinnamic_acid) = 0.002
equalRate(Prephenate,Orto_coumaric_acid) = 0.002 
equalRate(Prephenate,BA) = 0.002 
equalRate(Isochorismate,SA_chl) = 0.000 
slowerRate(Prephenate,Isochorismate) = 0.000 
slowerRate(EDS1,EDS5) = 0.000 
slowerRate(PAD3_4,EDS5) = 0.000 
slowerRate(NPR1_oligomer,NPR1) = 0.000 
maxSameTime(ROS,HRT) = 0.089 
maxAfter(HRT,MPK3) = 0.114 
maxSameTime(MPK6,MPK3) = 0.000 
maxAfter(MPK6,EDS1) = 0.000 
maxSameTime(PAD3_4,EDS1) = 0.000 
maxAfter(PAD3_4,EDS5) = 0.011 
maxAfter(EDS5,ICS1_2) = 0.000 
maxAfter(ICS1_2,SA) = 0.000 
maxAfter(ROS,BA2H) = 0.000 
maxAfter(ROS,NPR1) = 0.000 
maxAfter(NPR1,NPR1_TGA_2_4_5) = 0.011 
lowerThan(SA_chl,SA) = 0.002 
zeroPeakZero(Chorismate) = 1.000 
zeroPeakZero(Prephenate) = 0.000 
zeroPeakZero(Phenyl_pyruvate) = 0.000 
zeroPeakZero(Phenylalanine) = 0.000 
zeroPeakZero(SA) = 0.000 
zeroPeakZero(PR1_2_5) = 0.000 
stopFast(virus) = 0.007 
finalCriteria = 1.243/29 = 0.043  

The total criteria function in this step showed that on average 0.043 of each constraint is 
not satisfied. Compared to steps 1 and 2, the satisfaction of constraints was the best in the 
final step 3. Additionally, the satisfaction of biology experts was also considerably 
improved with respect to step 1 and step 2. The final dynamic curves of the same 4  
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molecules (SA, EDS1, PR1 and NPR1) that meet the criteria of the biological experts are 
shown in Figure 7. The detailed data for all three iterative optimisation steps are given 
for comparison in Table 1. 

Figure 7 The dynamic behavior of the SA, EDS1, PR1 and NPR1 variables based on the optimal 
set estimated with respect to the criteria function calculated from the 29 constraints 
during the step 3 

 

Table 1 Comparison table for three iterative optimisation steps 

SA model Components Reactions Constraints Averaged criteria function 

V1.0 52 38 8 0.047 

V2.0 61 56 33 0.137 

V3.0 50 89 29 0.042 

The selected parameter set is large, thus, making the search space enormous. This 
automatically directed us to use some of the stochastic optimisation methods since the 
deterministic methods are in the case of the large parameter sets overly time-consuming. 
Interesting results are obtained using our evaluation method, albeit some limitations 
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exist. Our method is based on the knowledge of the domain experts which is still 
subjective, and not on the explicit and objective numerical experimental data. 
Nevertheless, this knowledge is still valuable and very useful for guiding the model 
construction. The comparison of the simulation curves with the experimental datasets 
remains an open challenge of our approach. The common size of the experimental 
datasets in plant biology is from 2 to 11 time points. The experimental curves and the  
simulation curves do not have the same number of time points and it is difficult to 
compare them. An additional problem that arises is the determination of the common 
start and ending in these curves. 

4 Conclusion 

This paper represents the iterative process of converging to the dynamic parameters of 
the SA model that best satisfy the experts’ evaluation. In the illustrative example of three 
iterations we show how the dynamic behaviour of the simulated curves improves 
according to the value of optimisation criteria function and the experts’ evaluation. In 
future work we plan to develop the methodology to compare currently developed SA 
model and the sparse sets of experimental data and thus provide a numerical validation of 
this model. The methodology presented in this paper can be extended for the model 
development of any other biological pathway or mechanism. 
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